Monatshefte für Chemie 117, 783-792 (1986)

Complex Compounds of 2,2'-Bipyridyl with Some Rare-Earth Bromides

Danuta M. Czakis-Sulikowska* and Joanna Radwańska-Doczekalska

Institute of General Chemistry, Politechnical University, PL-90924 Łódź, Poland

(Received 18 February 1985. Accepted 27 February 1985)

The preparation of a series of new compounds $LnBr_3(2-bipy)_2 \cdot 6H_2O$ (Ln = La, Pr, Nd, Eu, Gd) and $LnBr_2OH(2-bipy)_2 \cdot 4H_2O$ (Ln = Pr, Nd, Sm, Eu, Gd) is described. The IR spectra of these compounds are discussed. The thermal decomposition of compounds $LnBr_3(2-bipy)_2 \cdot 6H_2O$ has been investigated.

(Keywords: 2,2'-Bipyridyl complexes; Rare-earth complexes; Infrared spectra; Thermal decomposition)

2,2'-Bipyridylkomplexe einiger Seltenerdmetallbromide

Es wurden 2,2'-Bipyridylkomplexe des Typs $LnBr_3(2-bipy)_2 \cdot 6 H_2O$ (Ln = La, Pr, Nd, Sm, Eu, Gd) und $LnBr_2OH(2-bipy)_2 \cdot 4 H_2O$ (Ln = Pr, Nd, Sm, Eu, Gd) dargestellt. Die IR-Spektren werden diskutiert. Die thermische Zersetzung von Verbindungen $LnBr_3(2-bipy)_2 \cdot 6 H_2O$ wird untersucht.

Introduction

Only fragmentary informations are available in the literature concerning the weakly basic nitrogen donors complexes with lanthanide bromides^{1,2}. Basile et al.³ have prepared several mono and bis terpyridylrare earth(III) bromide complexes and the results obtained from the infrared studies on these compounds are reported. The complexes $LnBr_3(phen)_n \cdot mH_2O$ (Ln = La-Lu, n = 2-4; m = 2-12, phen = 1,10phenanthroline) also have been isolated^{4,5}. In our previous paper^{6,7} we described a series of compounds $LnBr_3(4-bipy)_2 \cdot 6 H_2O$ (Ln = La, Pr, Nd) and $LnBr_3(4-bipy)_3 \cdot 4 H_2O$ (Ln = Sm, Eu, Gd, Ho, Tb, Dy, Er, Yb, 4-bipy= 4,4'-bipyridyl). 2,2'-Bipyridyl complexes of rare-earths are obtained when the anion is chloride, nitrate, salicylate, thio- and selenocyanate and perchlorate⁸⁻²⁰. In this paper compounds of 2,2'-bipyridyl with some rare-earth bromides have been prepared and studied.

784 D. M. Czakis-Sulikowska and Joanna Radwańska-Doczekalska

Experimental

2,2'-Bipyridyl obtained from Schuchardt München, was recrystallized from absolute ethanol. The rare earth(III) salts as hydrated products were prepared by dissolving the appropriate oxide (99.9% purity, obtained from Koch-Ligh Lab. and Fluka A. G.) in concentrated HBr solution. The product was crystallized under vacuum²¹. Other chemicals were of analytical reagent grade from POCh—Gliwice.

C, N and H were analyzed by standard microanalytical techniques. Ln^{3+} was determined by titration with *EDTA*, and bromide by gravimetric precipitation with silver ion.

The IR spectra were obtained in the 4000–400 cm⁻¹ region with a Carl Zeiss UR 10 instrument using KBr disks. The thermal decomposition studies were made with derivatograph OD-102/1 500 °C with α -Al₂O₃ as the inert substance. Other operating conditions: $T_{\rm max}$ 800 °C; heating rate 5 °C/min; the mass of sample—50 mg; sensitivity: TG—50 mg; DTA—1/5; DTG—1/5; air atmosphere. The X-ray diffractograms were recorded on a diffractometer DRON-1, using CuK_a radiation and nickel filter. Diffractograms were recorded with an automatic recorder for 2 θ angles.

Preparation of the Compounds $LnBr_3(2-bipy)_2 \cdot 6H_2O$

The hydrated lanthanide bromides were dissolved in 75% ethanol. The pH of the solutions is adjusted to above 1.5 with 2 *M* HBr. 2,2'-Bipyridyl was dissolved separately in a minimum volume of absolute alcohol. The rare-earth bromide solution is added to the 2,2'-bipyridyl solution in a mole ration of 1 : 2. The mixture was heated up to 80 °C for about 15 min and then allowed to cool. During several days the compounds crystallized with an empirical formula $LnBr_3(2-bipy)_2 \cdot 6 H_2O$. They were washed with ethyl alcohol and ethyl ether and dried in open air. The results of analyses for these complexes are collected in Table 1.

Preparation of the Compounds $LnBr_2OH(2-bipy)_2 \cdot 4H_2O$

These complexes were prepared by dissolving approximately 0.01 moles of the hydrated lanthanide bromides in 50 ml of 75% ethanol at $pH \sim 5$ -6. 2,2'-Bipyridyl (0.02 *M*) was dissolved separately in a minimum volume of 75% ethanol and added to the warm solution of rare-earth bromide. The mixture was heated up to 80 °C for about 15 min and allowed to cool. This solution was evaporated for crystallization at room temperature. The precipitate obtained was filtered, washed with small portion of cold absolute ethanol, then ethyl ether, and dried in open air. This procedure gives very small-crystalline compounds of the formula $LnBr_2OH(2-bipy)_2 \cdot 4H_2O$. The analytical results are tabulated in Table 2.

Results and Discussion

The complexes $LnBr_3(2-bipy)_2 \cdot 6H_2O$ and the hydroxo complexes $LnBr_2OH(2-bipy)_2 \cdot 4H_2O$ have been prepared. From weakly acid solutions the hydroxo complexes are isolated. In the case of more acidic solutions, $pH \sim 1.5$, the complexes $LnBr_3(2-bipy)_2 \cdot 6H_2O$ were obtained. All compounds are air stable and present similar colours than those of the rare earth ions. The compounds $EuBr_3(2-bipy)_2 \cdot 6H_2O$ and $EuBr_2OH(2-bipy)_2 \cdot 6H_2O$ and $EuBr_$

 $bipy_2 \cdot 4 H_2O$ showed pink fluorescence. The fluorescence was observed in the light from a LS/58 quartz lamp at room temperature. All compounds dissolve fairly well in ethanol.

The X-ray diffraction analysis revealed isostructurality between Pr and Nd as well as between Sm and Eu in the compounds of type $LnBr_3(2-bipy)_2 \cdot 6 H_2O$.

Infrared Spectra

The principal absorption frequencies and assignments²² for all compounds are collected in Table 3. All the complexes exhibit a very strong band between $1590-1600 \text{ cm}^{-1}$ and a medium band at $1560-1580 \text{ cm}^{-1}$. These absorptions are principally ring stretching vibrations similar to the bands at 1578 cm^{-1} and 1552 cm^{-1} in the free ligand²⁰. The ring breathing motion at 991 cm^{-1} is shifted $10-25 \text{ cm}^{-1}$ to higher frequencies in the metal complexes. The characteristic aromatic out-of-plane hydrogen deformation modes in unbonded 2-*bipy* are observed at 750 and 738 cm⁻¹. All the compounds possess very intense absorptions at $758-767 \text{ cm}^{-1}$ and medium or strong intensity absorptions at $\sim 742 \text{ cm}^{-1}$. Similar to the free ligand, a torsional ring motion appears at $406-409 \text{ cm}^{-1}$ for the hydroxo complexes and at 415 cm^{-1} for the $LnBr_3(2-bipy)_2 \cdot 6 \text{ H}_2\text{O}$ compounds. This is about $10-17 \text{ cm}^{-1}$ higher than in the free ligand (398 cm⁻¹)²². New bands are observed for the complexes at about 1495, 1315 and 1152-1170 cm⁻¹ for $LnBr_3(2-bipy)_2 \cdot 6 \text{ H}_2\text{O}$, also in the regions: 1500-1490, 1315-1320 and 1177-1185 cm⁻¹ for the hydroxo complexes.

%Metal calcd. found	%Br calcd. found	%C calcd. found	%N calcd. found	%H calcd. found
17.38	30.00	30.06	7.01	3.53
17.36	29.11	31.00	6.62	3.72
17.59	29.92	29.99	6.99	3.52
18.08	30.09	30.02	6.45	3.55
17.93	29.80	29.86	6.97	3.51
18.18	29.91	29.92	6.50	3.48
18.55	29.58	29.64	6.91	3.48
18.25	29.51	29.85	6.88	3.48
18.71	29.52	29.58	6.90	3.48
18.77	29.78	29.00	6.73	3.51
19.24	29.33	29.39	6.85	3.45
19.58	28.86	28.89	6.91	3.52
	% Metal calcd. found 17.38 17.36 17.59 18.08 17.93 18.18 18.55 18.25 18.25 18.71 18.77 19.24 19.58	% Metal calcd. found % Br calcd. found 17.38 30.00 17.36 29.11 17.59 29.92 18.08 30.09 17.93 29.80 18.18 29.91 18.55 29.58 18.25 29.51 18.71 29.52 18.77 29.78 19.24 29.33 19.58 28.86	%Metal %Br %C calcd. calcd. calcd. found found found 17.38 30.00 30.06 17.36 29.11 31.00 17.59 29.92 29.99 18.08 30.09 30.02 17.93 29.80 29.86 18.18 29.91 29.92 18.55 29.58 29.64 18.25 29.51 29.85 18.71 29.52 29.58 18.77 29.78 29.00 19.24 29.33 -29.39 19.58 28.86 28.89	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table 1. Analytical data of the compounds $LnBr_3(2-bipy)_2 \cdot 6H_2O$

786 D. M. Czakis-Sulikowska and Joanna Radwańska-Doczekalska

Ln	%Metal calcd. found	%Br calcd. found	%C calcd. found	%N calcd. found	%H calcd. found
Pr	20.07	22.76	34.21	7.98	3 59
	19.59	23.09	35.02	7.95	3.80
Nd	20.44	22.65	34.05	7.94	3.57
	20.52	22.46	33.75	7.73	3.64
Sm	21.13	22.46	33.76	7.87	3.54
	21.19	22.58	33.42	8.24	3.61
Eu	21.31	22.41	33.68	7.86	3.53
	21.46	23.00	32.95	8.00	3.60
Gd	21.89	22.24	33.43	7.80	3.51
	22.04	22.87	33.00	7.88	3.60

Table 2. Analytical data of the compounds LnBr₂OH(2-bipy)₂·4H₂O

The results tend to indicate that both 2-*bipy* molecules are chelated to the metals²². A similar interpretation made Sinha¹³ for the bis-2,2'-bipyridyl complexes with lanthanide(III) when the anion is nitrate or chloride and we for the compounds $Ln(2-bipy)_3(ClO_4)_3 \cdot 6 H_2O^{20}$.

The spectra of all 2,2'-bipyridyl complexes show strong and broad absorption bands in the water stretching region $(3\ 125-3\ 598\ cm^{-1})$ and a strong (or medium) band in the water bending region $(1\ 630\ cm^{-1})$. These frequencies are not included in Table 3.

In addition, the following coordination water frequencies have been observed 25,26 . The bands of weak intensity in the range $812-840 \text{ cm}^{-1}$ and in the range $545-574 \text{ cm}^{-1}$ have been assigned to the H₂O rocking and wagging modes, respectively. The band observed in the range $446-460 \text{ cm}^{-1}$ has been assigned to the metal—oxygen (for co-ordinated water) stretching vibration in $Ln\text{Br}_3(2-bipy)_2 \cdot 6\text{ H}_2\text{O}$ and at 475 cm^{-1} for hydroxo complexes.

Vibration frequencies of metal—ligand bands for coordinated hydroxyl and water molecules lie roughly in the region from 300 cm^{-1} to 500 cm^{-1} (Ref.²⁷). In the hydroxo complexes $LnBr_2OH(2-bipy)_2 \cdot 4 \text{ H}_2O$, these vibration frequencies for coordinated hydroxyl (stretching Ln - Ovibrations) are observed as strong band between $420-445 \text{ cm}^{-1}$. These frequencies were metal dependent: Gd > Eu > Sm > Nd > Pr. The deformation vibrations Ln—OH in these compounds exhibit a weak band at about 970 cm⁻¹.

Thermal Investigation

The thermal properties for $LnBr_3(2-bipy)_2 \cdot 6H_2O$ complexes were investigated.

Complex Compounds of Bipyridyl

Assignment	La	Pr	Nd	Sm	Eu	Gd
	I	$nBr_{2}(2-hinv)$)			<u> </u>
ring str. C - N	1 500	1 600 mg	1,600.00	1506 -	1.500 a	1.506 -
$\lim_{n \to \infty} \operatorname{str} C = \mathbf{N}$	1 590 VS	1 000 VS	1 000 VS	1 590 5	1 592 8	1 590 \$
ring str. C≡C	1 303 III 1 400 m	1 570 m	1 5/8 m	$1 \frac{5}{2}$ m	1 570 m	15/0m
new bands re-	1 490 m	1 493 m	1 490 m	1 492 m	I 495 m	
sulting from	1480 m	1 212 -	1 215 -	1.216	1 210 -	1 216
complexation	13108	1 3128	1 3158	1316m	13105	1 315 VS
· · · · · · · · · · · · · · · · · · ·	1.000	11/0m	1 162 \$	1 152 m	1154 m	11/0w
ring breatning mode	1 000 s	1 010 vs	1 010 vs	1010 vs	1 006 s	1 009 vs
H out of pl.	/60 s	/62 vs	760 vs	763 s	763 s	760 vs
bend	740 m	740 s	738 s	736 m	740 m	740 s
water vibrations	415 m	415 m	416 s	415 m	415 s	415 m
H ₂ O rock.	820 vw	812 w	818 m	840 m	840 w	816 w
$H_{2}O$ wag.	560 w	545 w	566 w	574 w	574 w	573 w
LnO str.	460 w	457 w	460 w	458 w	460 w	446 s
	Ln]	Br ₂ OH(2- <i>bij</i>	$(y)_2 \cdot 4 H_2O$			
ring str. $C = N$		1 600 vs	1 598 vs	1 600 vs	1 596 vs	1 600 vs
ring str. $C = C$		1 570 w	1 580 w	1 572 w	1 560 w	1 566 w
new bands re-		1 500 m	1 494 m	1 495 m	1 490 m	1495 s
sulting from		1 320 s	1 320 m	1 322 m	1315s	1 322 s
complexation		1 185 w	1185 w	1 185 w	1 177 m	1 185 w
ring breathing mode		1015 vs	1014 vs	1 015 vs	1015 vs	1 016 vs
H out of pl.		767 vs	765 vs	766 vs	758 vs	765 vs
bend		740 s	740 s	740 s	742 s	742 s
ring torsion		406 m	407 m	408 m	409 m	409 m
coordinated water vibratio	ns					
H ₂ O rock.		820 w	818 w	828 w	815 w	820 w
$H_{2}O$ wag.		545 w	574 w	547 w	547 w	545 w
LnO str.		475 w	$474\mathrm{w}$	475 w	475 w	475 w
coordinated OH- ion					· ·	
Ln—OH def.		975 w	975 vw	975 vw	968 w	972 w
LnO str.		420 m	426 s	437 vs	442 s	445 s

Table 3. Principal IR bands of the $LnBr_3(2-bipy)_2 \cdot 6H_2O$ and $LnBr_2OH(2-bipy)_2 \cdot 4H_2O$ compounds $[cm^{-1}]$

The $LnBr_3(2-bipy)_2 \cdot 6H_2O$ (Ln = Pr, Nd, Sm, Eu) complexes decompose according to the following scheme:

$$Ln Br_{3}(2-bipy)_{2} \cdot 6 H_{2}O \xrightarrow{1} Ln Br_{3}(2-bipy)_{2} \cdot 3 H_{2}O \xrightarrow{11} \\ \rightarrow Ln Br_{3}(2-bipy)_{2} \xrightarrow{III} Ln Br_{3}(2-bipy) \text{ (or EuBr_{3})} \xrightarrow{IV} \\ \rightarrow Ln OBr \xrightarrow{V} Ln_{2}O_{3} \text{ (Pr}_{6}O_{11}) \\ 54 \text{ Monatshefte für Chemie, Vol. 117/6-7}$$

787

788 D. M. Czakis-Sulikowska and Joanna Radwańska-Doczekalska

 $LnBr_3(2-bipy)_2 \cdot 6 H_2O$ began to lose water above 90 °C (Pr), 100 °C (Nd), 60 °C (Sm) and 95 °C (Eu), at first 3 mole H₂O were eliminated. The compounds became anhydrous at 200 °C for Pr, Nd, at 165 °C for Sm and 180 °C for Eu. 2,2'-Bipyridyl was split off in two stages for Pr, Nd and Sm. At first 1 mole of 2-*bipy* was eliminated to form $LnBr_3(2-bipy)$, (temperature range 210–300 °C for Pr, 235–300 °C for Nd, 260–330 °C for Sm).

In step IV they lost the remaining 2-*bipy* and were converted to LnOBr. On increasing the temperature the LnOBr molecules are decomposed to oxides. The DTA curves show the presence of 4 endothermic peaks.

Compound	Step	% loss mass		Temp.	Peak
	of decompo- sition	Calcu- lated	Deter- mined from TG	- range [°C]	temp. in DTA [°C]
LaBr ₃ (2- <i>bipy</i>) ₂ · 6 H ₂ O ↓	I	6.76	6.5	50-100	75 endo
$LaBr_{3}(2-bipy)_{2} \cdot 3 H_{2}O$	II	6.76	6.8	100-150	115 endo
LaBr ₃ (2- <i>bipy</i>) ₂ \downarrow	III	9.77	9.5	150–215	160 endo
LaBr ₃ (2- <i>bipy</i>) _{1.5} \downarrow LaBr (2 <i>bipy</i>)	IV	9.77	10.8	215-250	240 endo
$LaOBr^{a}$	V	37.54	35.7	290-460	460 exo
$\Pr Br_3(2-bipy)_2 \cdot 6 H_2O$	Ι	6.75	6.5	90–130	100 endo
$\Pr Br_3(2-bipy)_2 \cdot 3 H_2O$	II	6.75	7.0	130–200	155 endo
$\Pr Br_{3}(2-bipy)_{2}$	Ш	19.50	20.3	210-300	280 endo
PrOBr	IV	37.45	38.0	300-475	390 endo
Pr.Q.,	v			> 500	
$NdBr_{3}(2-bipy)_{2} \cdot 6 H_{2}O$	ľ	6.72	6.5	100–140	110 endo
NdBr ₃ (2- <i>bipy</i>) ₂ · 3 H ₂ O \downarrow	II	6.72	7.0	140–200	160 endo
$NdBr_{3}(2-bipy)_{2}$ \downarrow $NdBr_{2}(2-bipy)$	III	19.42	20.4	235-300	295 endo

Table 4. Thermal decomposition data

Table 4 continued

Compound	Step	% loss mass		Temp.	Peak
	ot decompo- sition	Calcu- lated	Deter- mined from TG	- range [°C]	temp. in DTA [°C]
	IV	37.29	36.5	300-415	395 endo
	v			> 490	440 61100
$\operatorname{SmBr}_{3}(2-bipy)_{2} \cdot 6 \operatorname{H}_{2}O$					
$\int SmBr_{a}(2-binv)_{a} \cdot 3H_{a}O$	I	6.67	7.5	60–118	110 endo
$\int \sin \left[\frac{1}{2} \cos \left(\frac{1}{2} \sin \left(\frac{1}{2} \sin$	II	6.67	6.5	118–165	140 endo
$\operatorname{SmBr}_{3}(2-bipy)_{2}$	III	19.27	19.5	260-330	300 endo
$\operatorname{SmBr}_{3}(2-bipy)$	IV	37.01	36.5	330-510	390 endo
SmOBr	V			> 660	
Sm_2O_3					
$= uBr_3(2-bipy)_2 \cdot 6H_2O$	I	6.65	7.0	95-130	120 endo
$\operatorname{EuBr}_{3}(2\operatorname{-bipy})_{2}\cdot 3\operatorname{H}_{2}O$	II	6.65	7.0	130-180	160 endo
$\operatorname{EuBr}_{3}(2-bipy)_{2}$	ΠΙ	38.46	37.7	260-360	320 endo
EuBr ₃		17 71	18.4	360 620	340 exo
EuOBr	I V	17.71	10.4	500-020	388 CAU
↓ Eu ₂ O ₂	V			> 650	
$GdBr_3(2-bipy)_2 \cdot 6H_2O$	т	8 82	84	80-126	108 endo
$GdBr_3(2-bipy)_2 \cdot 2H_2O$	T	4 41	4.5	126 150	142 and a
$\operatorname{GdBr}_3(2-bipy)_2$	11	4.41	4.5	126-150	142 endo
$\int d\mathbf{Br}_{2}(2-hinv)$	III	9.55	9.0	150-280	200 endo
GdPr (2 kinv)	IV	19.11	18.5	280-325	308 endo
$\operatorname{GuBr}_3(2-\partial ipy)_{0.5}$	v	27.15	25.5	325-400	382 endo
GdOBr ^b ↓	VI			> 510	
Gd_2O_3					

^a Some contamination by LaBr₃.
 ^b Some contamination by GdBr₃.

Fig. 1. Derivatogram of $PrBr_3(2-bipy)_2 \cdot 6H_2O$ in air

The transition compound $EuBr_3(2-bipy)_2$ loses all 2-bipy in one stage and is converted to $EuBr_3$. Within the temperature range 360–620 °C it forms EuOBr. Formation of Eu_2O_3 begins at 650 °C.

LaBr₃(2-*bipy*)₂ · 6 H₂O loses water above 50 °C and at 100 °C LaBr₃(2-*bipy*)₂ · 3 H₂O is formed. On further heating the trishydrate decomposes and at 150 °C it forms LaBr₃(2-*bipy*)₂. 2,2'-Bipyridyl is lost in 3 steps. At first 0.5 mol of 2-*bipy* was elimined and formed the transition compound LaBr₃(2-*bipy*)_{1.5}. It lost 0.5 mol 2-*bipy* and decomposed to LaBr₃(2-*bipy*). The DTA curves show the presence of 4 endothermic processes. From 290-460 °C LaOBr is formed, with some contamination by LaBr₃; LaOBr is stable in the temperature range 480–700 °C.

 $GdBr_3(2-bipy)_2 \cdot 6 H_2O$ dehydrates progressively above 80 °C, to give $GdBr_3(2-bipy)_2 \cdot 4 H_2O$ at 126 °C. 2,2'-Bipyridyl is lost in 3 steps and forms $GdBr_3(2-bipy)_{1.5}$ and $GdBr_3(2-bipy)_{0.5}$. Over a temperature of 325 °C it lost the remaining 2-bipy and was converted to GdOBr. Formation of Gd_2O_3 begins at 510 °C.

The compositions of intermediate compounds formed at various stages of the thermal decomposition were evaluated by calculation from

weight loss measurements, only LnOBr was isolated and confirmed by analysis of the metal content.

Data supporting the mode of decomposition are recorded in Table 4. One sees that agreement between the experimental results and the calculated values is quite good.

The thermal decomposition curve of $PrBr_3(2-bipy)_2 \cdot 6H_2O$ is shown, as example, in the Fig. 1.

Conclusions

The complexes of the type $LnBr_3(2-bipy)_2 \cdot 6H_2O$ (Ln = La, Pr, Nd, Sm, Eu, Gd) and $LnBr_2OH(2-bipy)_2 \cdot 4H_2O$ (Ln = Pr, Nd, Sm, Eu, Gd) have been isolated as crystalline or small-crystalline compounds. The compounds $LnBr_3(2-bipy)_2 \cdot 6H_2O$ and $LnBr_3(4-bipy)_2 \cdot 6H_2O$ (Ln = La, Pr, Nd) are new example of complexes with ligand isomerism.

All the compounds of the type $LnBr_3(2-bipy)_2 \cdot 6 H_2O$ lose water in 2 steps. The first step in their decomposition is attributed to the loss of the water of crystallization, while the second step of dehydration corresponds probably to the elimination of coordinated water. The IR spectra of all isolated compounds suggest that the water in these complexes is both coordinated and crystalline water. The IR data shows also, that these compounds are *cis*-bis 2,2'-bipyridyl chelates^{19,22}.

During the thermal decomposition of these compounds partial deamination takes place. The thermal decomposition of 2,2'-bipyridyl complexes with lanthanide bromides runs similar as in the case $LnBr_3(4-bipy)_n \cdot mH_2O^{6,7}$ and other 2,2'-bipyridyl complexes with rare earths¹⁵.

This work was partly supported by the Nuclear Problems Institute, Warsaw, Poland, Problem No. 04.3.13. We thank Mgr. *R. Janiszweski* for some preparations.

References

- ¹ Forsberg J. H., Coord. Chem. Rev. 10, 195 (1973).
- ² Garnovskii D. A., Paniuskin V. T., Gricenko T. V., Koord. Chim. 7, 483 (1981).
- ³ Basile L. J., Gronet D. L., Ferraro J. R., Spectrochim. Acta 24 A, 707 (1968).
- ⁴ Labanov N. I., Zh. Neorgan. Chim. 17, 2844 (1972).
- ⁵ Eremin Ju. G., Bondorienko G. I., ibid. 18, 1715 (1973).
- ⁶ Czakis-Sulikowska D. M., Radwańska-Doczekalska J., Theory-Structure-Properties of Complex Compounds. IXth Summer School an Coordination Chemistry, p. 39, Karpacz-Bierutowice, 1975.
- ⁷ Czakis-Sulikowska D. M., Radwańska-Doczekalska J., J. Inorg. Nucl. Chem. **41**, 1299 (1979).
- ⁸ Labanov N. I., Smirnova V. A., Zh. Neorg. Khim. **8**, 2208 (1963); ibid. **12**, 1825 (1965).
- ⁹ Tsintsadze G. V., Golub A. M., Kopa M. V., ibid. 14, 2743 (1969).

D. M. Czakis-Sulikowska et al.: Complex Compounds of Bipyridyl 792

- ¹⁰ Golub M. A., Kopa M. V., Skopenko V. W., Tsintsadze G. V., Z. anorg. allg. Chem. 375, 302 (1970).
- ¹¹ Golub A. M., Kopa M. V., Andreichenko O. E., Zh. Obshch. Khim. 39, 1382 (1969).
- ¹² Hart F. A., Laming F. P., J. Inorg. Nucl. Chem. 26, 579 (1964); ibid. 27, 1825
- (1965). ¹³ Sinha S. P., Spectrochim. Acta 20, 879 (1964); J. Inorg. Nucl. Chem. 27, 115 (1965); ibid. 28, 189 (1966).
- ¹⁴ Carassiti V., Seminara A., Seminara-Musumeci A., Ann. Chim. (Rome) 54, 1025 (1964).
- ¹⁵ Kokunov J. V., Segal E. J., Rev. Roumaine Chim. 16, 1647 (1971).
- ¹⁶ Brezina F., Monatsh. Chem. 100, 1684 (1969).
- ¹⁷ Jeriemin Ju. G., Bondarienko T. I., Zh. Neorg. Khim. 21, 387 (1976).
- ¹⁸ Kopa M. V., ibid. 18, 2072 (1973).
- ¹⁹ McWhinnie W. R., Miller J. D., Advances in Inorg. Chem. Radiochem. 12, 137 (1965). ²⁰ Czakis-Sulikowska D., Radawńska-Doczekalska J., Monatsh. Chem. 113, 827
- (1982).
- ²¹ Bukietyńska K., Jeżowska-Trzebiatowska B., Theory-Structure-Properties of Complex Compounds, IXth Summer School on Coordination Chemistry, p. 39, Karpacz-Bierutowice 1975.
- ²² Strukl J. S., Walter J. L., Spectrochim. Acta 27 A, 209 (1971); ibid. 27 A, 223 (1971).
- ²³ Hanni A., Morlot G., Brehat F., ibid. **24 A**, 1167 (1968).
- ²⁴ Nakamoto K., Infrared Spectra of Inorganic and Coordination Compounds. New York: J. Wiley. 1963.
- ²⁵ Nakagawa I., Shimanouchi T., Spectrochim. Acta 20 A, 420 (1964).
- ²⁶ Juchnievic G. V., Uspiechi Khim. 32, 1397 (1963).
- ²⁷ Baran V., Coord. Chem. Rev. 6, 65 (1971).